

Mark Scheme (Results)

June 2011

International GCSE Mathematics (4MB0) Paper 01

ALWAYS LEARNING

https://xtremepape.rs/

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCSE team on 0844 576 0027, or visit our website at <u>www.edexcel.com</u>.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011 Publications Code UG028414 All the material in this publication is copyright © Edexcel Ltd 2011

4MB0 Summer 2011 - Paper 1

Question	Working	Notes	;	Mark
Number 1.	Common difference of 5	M1		
	2, 7, 12, 17	A1	2	2
2.	$\frac{26-2}{-3-5}$ OR $\frac{2-26}{5+3}$	M1		
	-3-5 5+3	////		
	OR			
	Solving for m			
	26 = -3m + c			
	2 = 5m + c	M1		
	Full method for obtaining <i>m</i> (no slips)			
		A1	2	2
3.	-3 10, 12, 14	B2 (-	2	2
5.	10, 12, 14	1eeoo)	2	2
4.	3 + 20 = 8x (rem. denom. and x isolated, one arithmetical slip)	M1		
	7 23			
	$2\frac{7}{8}$ OR 2.875 OR 2.88 OR $\frac{23}{8}$	A1	2	2
5.	3 or 7 identified as a common factor	M1		
	21	A1	2	2
6.	x(x - y) + z(x - y) OR $x(x + z) - y(x + z)(no slips)$	M1		
	(x + z)(x - y)	A1	2	2
7.		M1	2	2
	$\frac{55.43}{115}$ ×100 OR 55.43/1.15 OR 55.43× $\frac{20}{23}$			
		A1	2	2
	£ 48.20		2	2
8.	$\frac{x(x+2)-2x}{x^2+2x-2x}$			
	2(x+2) OR $2x+4$			
	OR $\frac{x(x+2)}{2(x+2)} - \frac{2x}{2(x+2)}$ (<u>no</u> slips)			
	$\frac{1}{2(x+2)} - \frac{1}{2(x+2)} = \frac{1}{2(x+2)}$	M1		
	x^2 x^2			
	$\frac{x^2}{2(x+2)}$ OR $\frac{x^2}{2x+4}$	A1	2	2
9.	One term correctly differentiated	M1		
	$6x^2 + 12x^{-5}$	A1	2	2
	υλ τ ΙΖλ	AI	2	2

Question Number	Working	Note	S	Mark
10.	$\angle BDA = 59^{\circ}$ and $\angle ABD = 59^{\circ}$	B1		
101	\angle in same segment for one of above angles	B1		
	Cc inc. reason for an isos Δ	B1	3	3
	NB: The last B mark is dependent on the previous two.			
11.	 24 - 3x < 20 (Rem. denom., one arithmetical slip) NB: Use of "=" instead of inequality: award M1 once the correct inequality has been indicated eg in line below 	M1		
	4 < 3x (o.e)	A1		
	2	A1	3	3
	OR			
	Trial and error			
	Subs x = 1 and x = 2 into 6 - $\frac{3x}{4}$	M1		
	Correctly (st $x = 1 \rightarrow 5.25$ and $x = 2 \rightarrow 4.5$)	A1		
	2	A1	3	3
12.	540/5 (108)	B1		
	"108" x 12 (o.e.)	M1		
	Other Possible Methods:			
	$\frac{2}{12}N$ and $\frac{7}{12}N$	B1		
	$\frac{5}{12}N = 540$	M1		
	OR			
	S = smallest share, L = largest share			
	Use of $\frac{S}{2}$ OR $\frac{L}{7}$	B1		
	$\frac{S}{2} = \frac{S+540}{7}$ OR $\frac{L}{7} = \frac{L-540}{2}$	M1		
	£ 1296	A1	3	3
13.	Using 4.5	B1		
	$\frac{1}{2}\pi.9^2$ - $\pi.$ "4.5" ²	M1		
	63.6 cm ²	A1	3	3

International GCSE Mathematics (4MB0) Paper 01 Summer 2011

Question	Working	Notes		Mark
Number 14.	$u_{1}u_{2}(6) u_{2}u_{3}(-6)$			
	$AB = \begin{pmatrix} 6 \\ -8 \end{pmatrix} (or BA = \begin{pmatrix} -6 \\ 8 \end{pmatrix})$	B1		
		M1		
	$\sqrt{(6^{2} + 8^{2})}$	A1	3	3
15.	10 (from completely correct working) 240 OR 6x40 OR 48 (can be implied)	B1		
15.	240 OK 6x40 OK 48 (can be implied)	DI		
	3x + 102 + 60 + 30 = "240" OR			
	192 + 60 + 30 + 3x - 40			
	6	M1		
	16	A1	3	3
16.	$AX \cdot 3 = 12 \times 4$ (o.e)	M1		
	<i>AX</i> = 16	A1		
	<i>AO</i> = ("16" + 3)/2 = 9.5 cm	A1 ft	3	3
	OR			
	$(r = AO)$: $(2r-3) \ge 3 = 12 \ge 3$, $6r = 57$ (1 slip) $(x = OX)$: $3 \ge (x+3+3) = 12 \ge 3$, $x = 6.5$	M1, A1 M1, A1		
	<i>AO</i> = 9.5 cm	A1 ft	3	3
17.	2, 9 or 11 seen	B1		
	$\frac{2+9}{11}$ (allow one numerical error)			
	11 (allow one numerical error)	M1		
	1	A1	3	3
18.	(x = exterior angle)			
	$8x + x = 180^{\circ}$ OR $8\left(\frac{360}{n}\right) + \left(\frac{360}{n}\right) = 180$ (o.e)	M1		
	x = 20 OR "3240 = 180 <i>n</i> "	A1		
	360/"20" OR "3240/ 180"	M1 DEP		
	<i>n</i> = 18	A1	4	4
	OR			
	(<i>e</i> = interior angle) <i>e</i> = 8 x (180 - <i>e</i>)	M1		
	e = 160	A1		
	$n = \frac{360}{100 - 1100}$	M1 DEP		
	180 - "160" n = 18	A1	4	4

International GCSE Mathematics (4MB0) Paper 01 Summer 2011

Question Number	Working	Notes		Mark
19.	$(\sqrt{512} =) 16\sqrt{2} \text{ OR } 8\sqrt{8}$	B1		
	$(\sqrt{72} =) 6\sqrt{2}$ OR $3\sqrt{8}$	B1		
	10√2	B1		
	10	B1	4	4
20.	$7^2 = 4^2 + 5^2 - 2.4.5.\cos A$	M1		
	$2x4x5xcosA = 4^2 + 5^2 - 7^2$	M1		
	$\cos A = (4^2 + 5^2 - 7^2)/2x4x5$ (= $-\frac{8}{40}$ = -0.2) o.	M1 dep		
	NB: Allow <u>1</u> sign slip in the above 3 M marks = 102°, 258°, 462°,	A1	4	4
21.	(a) correctly labelled line (line going through (0, -5) and (4, 3)) or correct gradient plus line going through (2.5, 0))	B1	1	
	 (b) correctly labelled line (line going though (0, 4) and (4, 0) or correct gradient plus line going through (4, 0)) NB: (1) Penalise labelling once. (2)The lines must be sufficiently long to identify their intersection in (c) 	B1	1	
	 (c) x = 3 y = 1 NB: (1) Above values must be from their diagram. (2) Accept (3, 1) 	B1 ft B1 ft	2	4
22.	(a) 1/3 OR 0.333 OR 33.3%	B1	1	
	(b) 2, 3, 5, 7, 11	B1	1	
	(c) correct diagram (ft on "(b)")	B1 ft	1	
	(d) "15"/36 OR " $\frac{5}{12}$ " OR "0.417" OR "41.7%	B1 ft	1	4
23.	(ie ft on "15" circled outcomes in (c)) (a)			
23.	(a) $\begin{pmatrix} 17 & 12+4a \\ 6+2a & 8+a^2 \end{pmatrix}$	B2(-1ee)	2	
	(b) $a = -3,$ $\lambda = 17$	B1 B1	2	4

International GCSE Mathematics (4MB0) Paper 01 Summer 2011

Question Number	Working	Notes		Mark
24.	Heights: 4.8, 7.2, 6.4, 1.1 OR 24, 36, 32, 5.5	B1, B1, B1 B1	4	4
25.	(a) attempt at construction (3 sets of arcs seen), accuracy	M1 A1	2	
	(b) attempt at construction (2 sets of arcs seen)	M1		
	accuracy (c) 60 (± 1) mm	A1 B1	2 1	5
26.	(a) $\frac{1}{2} \times \frac{1}{2} x \times [x + (x + 4)]$	M1		
	$\frac{1}{4}x(2x+4)$ OR $\frac{1}{2}x(x+2)$ OR $0.5x^2 + x$	A1	2	
	(b) " $2x^2 + 4x = 4 \times 84$ " (o.e)	M1		
	x ² + 2x - 168 = 0 (o.e. ie a quadratic but c.a.o)	A1		
	(x + 14)(x - 12) = 0 (o.e, method for solving 3 term quadratic)	M1 (INDEP)		
	x = 12 (c.a.o)	A1	4	6
27.	$\frac{1}{3} + \frac{1}{5} + \frac{1}{4} \left(= \frac{47}{60} \right)$	M1		
	"13x/60" = 26 120	M1 A1		
	OR			
	"13/60" = 26 blue sweets (1/60 = 26/13 =) 2	M1 A1		
	40 (Red) 24 (Yellow) 30 (Green)	A1 A1 A1	6	6

Question	Working	Notes		Mark
Number 28.	(a) three terms, at least one correctly	M1		
20.	differentiated		_	
	$15 + 4t - 3t^2$	A1	2	
	(b) "(a)" = 0	M1		
	<i>t</i> = 3 c.a.o from a correct eq ⁿ	A1		
	s("3")	M1 DEP		
	36	A1		
29.	NB: Penalise ncc ONCE only in this question	M1	4	6
	(a) $10/AD = \sin 26^{\circ}$		_	
	22.8 cm	A1	2	
	(b) 16/"22.8" = tan ∠ CAD	M1		
	35.0°/35. 1° (accept 35)	A1	2	
	(c) any correct trig/Pythagorean method for AC			
	Eg sin"35.0" = $\frac{16}{AC}$ OR $AC^2 = 16^2 + "22.8"^2$	M1		
	(AC = 27.86)			
	$\frac{AB}{"27.86"} = \cos$ "29.0"	M1 DEP		
	OR $\sin(26 + "35.0") = \frac{AB}{"27.86"}$			
	OR			
	Extend BC to G so that BG is perpendicular to EG	M1		
	DG = 16 x cos 26 AB = 10 + "16 x cos 26"	M1 DEP		
		A1	3	7
	24.3/24.4 cm			

https://xtremepape.rs/

Further copies of this publication are available from International Regional Offices at <u>www.edexcel.com/international</u>

For more information on Edexcel qualifications, please visit www.edexcel.com

Alternatively, you can contact Customer Services at <u>www.edexcel.com/ask</u> or on + 44 1204 770 696

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

